

Mark Scheme (Results)

June 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2018 Publications Code All the material in this publication is copyright © Pearson Education Ltd 2018 General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the **application of the mark scheme to a candidate's** response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the **advice given in recent examiners' reports is that the formula should** be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		Notes	Marks			
1.	$\sum_{r=1}^{n} r(r +$	$3) = \sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$	$=\sum_{r=1}^{n}r^{2}+3\sum_{r=1}^{n}r^{2}$					
	$=\frac{1}{6}n(n+$	1)(2 <i>n</i> +1) + 3 $\left(\frac{1}{2}n(n+1)\right)$	Atte	empts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1			
				Correct expression (or equivalent)	A1			
	$=\frac{1}{6}n(n+1)$	(2n+1)[(2n+1)+9]	Atte	dependent on the previous M mark empt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.	dM1			
	$=\frac{1}{6}n(n+1)$	+1)(2 <i>n</i> +10)		{this step does not have to be written}				
	$=\frac{n}{3}(n+1)$	+1)(2n+10) 1)(n+5) or $\frac{1}{3}n(n+1)(n+1)$	5)	Correct completion with no errors. Note: $a=3, b=5$	A1			
					(4)			
					4			
1.	Noto	Applying e.g. $n-1$ $n-2$	to the	Question 1 Notes e printed equation without applying the standard form	mulae			
1.	Note	to give $a=3, b=5$ is M0.			inulae			
	Alt 1			two marks using the main scheme)				
		Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n \equiv \frac{1}{3}n^3$	$\frac{1}{a}n^3 + \frac{1}{a}n^3 + 1$	$\left(\frac{b+1}{a}\right)n^2 + \frac{b}{a}n$ o.e.				
	dM1	Equating coefficients to fi	nd bot	h $a = \dots$ and $b = \dots$ and at least one correct of $a = 2$	3 or $b=5$			
	A1	Finds $a=3$ and $b=5$						
	Alt 2	Alt Method 2: (Award t	he firs	st two marks using the main scheme)				
		$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1)(2n+1) + \frac{3}{2}n(n+1)(2n+1)(2n+1) + \frac{3}{2}n(n+1)(2n+1)(2n+1) + \frac{3}{2}n(n+1)(2n+1)(2n+1)(2n+1) + \frac{3}{2}n(n+1)(2n+1)($	+1) ≡	$\frac{n}{(n+1)(n+b)}$				
	dM1	0 2		a sidentity o.e. and solves to find both $a = \dots$ and $b =$	_			
	ulvii	and at least one correct of $n = 1, n = 2, n$						
				or $2a - b = 1$ and $n = 2$ gives $14 = \frac{6(2+b)}{a}$ or $7a$	21 (
			a	or $2a-b=1$ and $n=2$ gives $14 = \frac{a}{a}$ or $7a$	-3D=0			
	A1	Finds $a = 3$ and $b = 5$						
	Note	Allow final dM1A1 for $\frac{1}{3}$	Allow final dM1A1 for $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n$ or $\frac{1}{3}(n^3 + 6n^2 + 5n) \rightarrow \frac{n}{3}(n+1)(n+5)$ with no incorrect working.					
		with no incorrect working						
	Note	A correct proof $\sum_{r=1}^{n} r(r+1)$	$3) = \frac{1}{3}$	$\frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g.	a = 5, b = 3			
		is M1A1dM1A1 (ignore s	ubsequ	uent working)				
	Note	Give A0 for $\frac{2}{6}n(n+1)(n+1)$	- 5) wit	thout reference to $a = 3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3}n(n+1)(n+5)$	+1)(n+5)			

Question Number	Scheme		No	tes	Mar	ks
2.	P represents an anti-clockwise rotation	about the origin thro	ough 45 d	degrees		
(a)	$\left\{ \mathbf{P} = \right\} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2} \end{pmatrix}$	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ or e.g. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$	Correct matrix which is expressed in exact surds	B1	
(b)	Enlargement			Enlargement er enlarge	M1	(1)
(b)	Enlargement	About	(0, 0) or	Enlargement or enlarge about <i>O</i> or about the origin	1111	
	Centre (0, 0) with scale factor $k\sqrt{2}$	ar	nd scale o	factor or times and $k\sqrt{2}$	A1	
				llow $\sqrt{2k^2}$ in place of $k\sqrt{2}$		
	Note: Give M0A0	for combinations of				(2)
(c) Way 1	$\left\{ \mathbf{PQ} = \right\} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix}$	$=\begin{pmatrix} k & -k \\ k & k \end{pmatrix}$		Multiplies their matrix from t (a) by Q [either way round] and applies " $ad - bc$ " to the resulting matrix		
	$\left\{ \det \mathbf{PQ} = \right\} (k)(k) - (-k)(k) = 2k^2$	or states their det P		to give $2k^2$ or states their det PQ = $2k^2$ ondone {det PQ = } $k^2 + k^2$	A1	
	1	6(their determinant) = 147 or puts their determinant equal to $\frac{147}{6}$				
	$6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$				M1	
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$			Obtains $k = 3.5$, o.e.	A1	
			1			(4)
(c) Way 2	det $\mathbf{Q} = \left(k\sqrt{2}\right)\left(k\sqrt{2}\right) - (0)(0)$ or det	$\mathbf{Q} = \left(k\sqrt{2}\right)\left(k\sqrt{2}\right)$		applies " $ad - bc$ " to Q or applies $\left(k\sqrt{2}\right)^2$	M1	
	$\{\det \mathbf{P} = 1 \implies \} \det \mathbf{PQ} = (1)(2k^2) = 2k$ or $\det \mathbf{Q} = 2k^2$	k^2		d deduces that det $\mathbf{PQ} = 2k^2$ r states their det \mathbf{PQ} = $2k^2$ or det $\mathbf{Q} = 2k^2$	A1	
	$6(2k^2) = 147 \text{ or } 2k^2 = \frac{147}{6}$ $6(\text{their det}(\mathbf{PQ})) = 147 \text{ or } (\text{their det}(\mathbf{PQ})) = \frac{147}{6}$ $6(\text{their det}(\mathbf{Q})) = 147 \text{ or } (\text{their det}(\mathbf{PQ})) = \frac{147}{6}$			or $(\text{their det}(\mathbf{PQ})) = \frac{147}{6}$	M1	
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$	Obtains $k = 3.5$, o.e.			A1	
						(4)
						7

		Question 2 Notes
2. (b)	Note	"original point" is not acceptable in place of the word "origin".
	Note	"expand" is not acceptable for M1
	Note	"enlarge x by $k\sqrt{2}$ and no change in y" is M0A0
(c)	Note	Obtaining $k = \pm 3.5$ with no evidence of $k = 3.5$ {only} is A0
	Way 2 Note 1	Give M1A1M0A0 for writing down 147(2k ²) = 6 or $\frac{1}{2k^2} = \frac{147}{6}$ or $6\left(\frac{1}{2k^2}\right) = 147$, o.e.
		with no other supporting working.
	Way 2 Note 2	Give M0A0M1A0 for writing det $\mathbf{Q} = \frac{1}{k^2 - (-k^2)}$ or $\frac{1}{2k^2}$, followed by $6\left(\frac{1}{2k^2}\right) = 147$
	Note	Allow M1A1 for an incorrect rotation matrix P , leading to det $\mathbf{PQ} = 2k^2$
	Note	Allow M1A1M1A1 for an incorrect rotation matrix P , leading to det $\mathbf{PQ} = 2k^2$ and $k = 3.5$, o.e.
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{147}{6}} \Rightarrow k = 3.5$ is M1A1dM1A1
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{6}{147}}$ is M1A1dM0

(b) {PQ is parallel to the x-axis \Rightarrow } Focus-directrix Property \Rightarrow SP {= PQ} = 14 Focus-directrix Property \Rightarrow SP {= PQ} = 14 Note: PQ = 14 stated by itself without reference to SP = 14 is B0 (c) Way 1 (c) Way 1 (c) Way 1 (c) Way 2 (c) Way 2 (c) (c) (c) (c) (c) (c) (c) (c)	Question Number	Scheme	Notes	Marks			
Note: You can recover this mark for \$(1.5, 0) stated either parts (b) or part (c)(c)(b){PQ is parallel to the x-axis \Rightarrow } Focus-directrix Property $\Rightarrow SP (= PQ) = 14$ Stated by itself without reference to $SP = 14$ is B0B1 cao(c)way 1{directrix $x = -\frac{3}{2} \& PQ = 14 \Rightarrow$ } $y_{p}^{2} = 6(12.5) \Rightarrow y_{p} =$ $x_{p} = 14 - \frac{3}{2} (=12.5)$ $x = 14 - their "a"$ M1M1 $y_{p}^{2} = 6(12.5) \Rightarrow y_{p} =$ dependent on the previous M mark Substitutes their x into $y^{2} = 6x$ and finds $y =$ M1Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1A1(c) $(x - 1.5)^{2} + (6x) = 14^{2}$ $\Rightarrow x^{2} + 3x - 193.75 = 0 \Rightarrow x =$ Applies Pythagoras to $x = "a", \sqrt{6x}$ and 14, then forms and solves quadratic equation in x to give $x =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ M1(c) $(\sqrt{75})^{2} = 6x \Rightarrow x =$ Applies Pythagoras to $15 \cdot r^{2} = "1.5", 2("1.5")r and 14,to give t^{2} = or t = and finds x =M1$	3.	$C: y^2 = 6x; S$ is the focus of $C; y^2 = 4ax; P(at^2, 2at); Q$ lies on the directrix of $C. PQ = 14$					
(b) {PQ is parallel to the x-axis \Rightarrow } Focus-directrix Property $\Rightarrow SP \models PQ = 14$ Note: $PQ = 14$ stated by itself without reference to $SP = 14$ is B0 (c) Way 1 (c) (c) (c) (c) (c) (c) (c) (c)	(a)	$\{a = 1.5 \Rightarrow\}$ S has coordinates (1.5, 0)	$(1.5, 0) \text{ or } \left(\frac{3}{2}, 0\right) \text{ or } \left(\frac{6}{4}, 0\right)$	B1 cao			
Focus-directrix Property $\Rightarrow SP [= PQ] = 14$ or 14 stated by itself in (b)Bl caoNote: $PQ = 14$ stated by itself without reference to $SP = 14$ is B0(c)(c)(directrix $x = -\frac{3}{2} \& PQ = 14 \Rightarrow)x_r = 14 - \frac{3}{2} [= 12.5]x = 14 - their "a"MIUpper 12 stated by itself without reference to SP = 14 is B0(c)(c)y_r^2 = 6(12.5) \Rightarrow y_r =Correct and paired. Accept (12.5, \sqrt{75})AIEither x = 12.5, y = 5\sqrt{3} or (12.5, 5\sqrt{3})Correct and paired. Accept (12.5, \sqrt{75})AI(c)(x = -1.5)^2 + (6x) = 14^2Applies Pythagoras to x = "a", \sqrt{6x} and 14, then forms and solves quadratic equation in xMI(c)(x = -1.5)^2 + (6x) = 14^2Applies Pythagoras to x = "a", \sqrt{6x} and 14, then forms and solves quadratic equation in xMI(x = -1.5)^2 + (6x) = 14^2x = -1.5Applies Pythagoras to x = "a", \sqrt{6x} and 14, then forms and solves quadratic equation in xMI(x = -1.5)^2 + (6x) = 14^2x = -1.5Applies Pythagoras to x = "a", \sqrt{6x} and 14, then forms and solves quadratic equation in xMI(x = -1.5)^2 + (6x) = 14^2x = -1.5Applies Pythagoras to 14 - "2a", y and 14, and solves to give y =(x = -1.5)^2 + (6x) = 14^2x = -1.5<$			for $S(1.5, 0)$ stated either parts (b) or part (c)	(1)			
Note: $PQ = 14$ stated by itself without reference to $SP = 14$ is B0(c) (way 1) $\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_p = 14 - \frac{3}{2} (=12.5)$ $x = 14 - \text{their } "a"$ M1 <i>ic</i> $x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_p = 14 - \frac{3}{2} (=12.5)$ $x = 14 - \text{their } "a"$ <i>ic</i> $y_p =$ <i>ic</i> $x = 14 - \text{their } "a"$ MII <i>ic</i> $y_p^2 = 6(12.5) \Rightarrow y_p =$ <i>ic</i> $x = 14 - \text{their } "a"$ MII <i>ic</i> $y_p^2 = 6(12.5) \Rightarrow y_p =$ <i>ic</i> $x = 12.5, y = 5\sqrt{3}$ or $(12.5, \sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 <i>ic</i> $y_p^2 =$ Applies Pythagoras to $x = "a", \sqrt{6x}$ and 14 , then forms and solves quadratic equivariant in x MII <i>ic</i> $(x - 1.5)^2 + (6x) = 14^2$ Applies Pythagoras to $x = "a", \sqrt{6x}$ and 14 , then forms and solves quadratic equivariant in x MII <i>ic</i> $(x - 1.5)^2 + (6x) = 14^2$ Applies Pythagoras to $x = "a", \sqrt{6x}$ and 14 , then forms and solves quadratic equivariant in $x =$ <i>ic</i> $(x - 1.5)^2 + (6x) = 14^2$ Applies Pythagoras to $14 - "2a", y$ and 14 , and solves to give $y =$ <i>ic</i> $(x - 1.5)^2 + (6x) = 14^2$ <i>ic</i> $x =$ <i>ic</i> $(x - 1.5)^2 + (3x)^2 = 14^2$ <i>ic</i> $x =$ <i>ic</i> $(x - 1.5)^2 + (3x)^2 = 14^2$ <i>ic</i> $x =$ <i>ic</i> $(x - 1.5)^2 + (3x)^2 = 14^2$ <i>ic</i> $x =$ <i>ic</i> $(x - 1$	(b)			B1 cao			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•	(1)			
$y_{p} = 6(12.5) \Rightarrow y_{p} =$ Substitutes their x into $y^{2} = 6x$ and finds $y =$ $dM1$ Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1 (12) $y = \sqrt{6x}$ $y = \sqrt{6x}$ (12) $(12$		$\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Longrightarrow \right\} x_p =$	$14 - \frac{3}{2} = 12.5$ $x = 14 - \text{their "}a$ "	M1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$y_p^2 = 6(12.5) \Rightarrow y_p = \dots$		dM1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$) Correct and paired. Accept $(12.5, \sqrt{75})$				
Way 2 $\Rightarrow x^2 + 3x - 193.75 = 0 \Rightarrow x =$ then forms and solves quadratic equation in x to give x=M1(c) $x^2 + 3x - 193.75 = 0 \Rightarrow x =$ then forms and solves quadratic equation in x to give x=M1(c) $As in Way 1$ $MM1 A1$ (c) $As in Way 1$ $MM1 A1$ (c) $As in Way 1$ $MM1$ (c) $M1$ (c) $11^2 + y^2 = 14^2 \Rightarrow y =$ Applies Pythagoras to $14 - "2a"$, y and 14 , and solves to give $y =$ (c) $M1$ ($\sqrt{75})^2 = 6x \Rightarrow x =$ dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$ ($\sqrt{75})^2 = 6x \Rightarrow x =$ Applies Pythagoras to $"1.5"t^2 - "1.5"$, $2("1.5")t$ and 14 , $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ (c) $(1.5t^2 - 1.5)^2 + (3t)^2 = 14^2$ $\Rightarrow 2.25t^4 + 4.5t^2 - 193.75 = 0$ $\{or 9t^4 + 18t^2 - 775 = 0\}$ $\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ Applies Pythagoras to " $1.5"t^2 - "1.5", 2("1.5")t$ and 14 , $to give t^2 = or t =, and finds at leasts one ofx = or y = by using x = "1.5"t^2 or y = 2("1.5")tb x = 1.5\left(\frac{5\sqrt{3}}{3}\right)^2, y = 3\left(\frac{5\sqrt{3}}{3}\right)Correct and paired. Accept (12.5, \sqrt{75})A1$		$S \xrightarrow[]{x-"1.5"}_{or}$					
(c) Way 3 $11^2 + y^2 = 14^2 \Rightarrow y =$ Applies Pythagoras to $14 - "2a"$, y and 14, and solves to give $y =$ M1 $(\sqrt{75})^2 = 6x \Rightarrow x =$ dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$ dM1Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1(c) Way 4 $(1.5t^2 - 1.5)^2 + (3t)^2 = 14^2$ $\Rightarrow 2.25t^4 + 4.5t^2 - 193.75 = 0$ $\{ \text{or } 9t^4 + 18t^2 - 775 = 0 \}$ $\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ Applies Pythagoras to "1.5"t^2 - "1.5", 2("1.5")t and 14, forms and solves a quadratic equation in t^2 to give $t^2 =$ or $t =,$ and finds at leasts one of $x =$ or $y =$ by using $x = "1.5"t^2$ or $y = 2("1.5")t$ M1 $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2$, $y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$ dM1Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1			then forms and solves quadratic equation in x to give $x =$				
(c) Way 3 $11^2 + y^2 = 14^2 \Rightarrow y =$ Applies Pythagoras to $14 - "2a"$, y and 14 , and solves to give $y =$ M1 $(\sqrt{75})^2 = 6x \Rightarrow x =$ dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$ dM1Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1(c) 			As in way 1	(3)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$11^2 + y^2 = 14^2 \implies y = \dots$					
(c) (c) (1.5t ² - 1.5) ² + (3t) ² = 14 ² $\Rightarrow 2.25t^{4} + 4.5t^{2} - 193.75 = 0$ {or $9t^{4} + 18t^{2} - 775 = 0$ } $\Rightarrow t^{2} = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5\left(\frac{5\sqrt{3}}{3}\right)^{2}, y = 3\left(\frac{5\sqrt{3}}{3}\right)$ Either $x = 12.5, y = 5\sqrt{3}$ or (12.5, $5\sqrt{3}$) (12.5, 53			Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1			
(c) (c) (1.5t ² - 1.5) ² + (3t) ² = 14 ² $\Rightarrow 2.25t^{4} + 4.5t^{2} - 193.75 = 0$ {or $9t^{4} + 18t^{2} - 775 = 0$ } $\Rightarrow t^{2} = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5\left(\frac{5\sqrt{3}}{3}\right)^{2}, y = 3\left(\frac{5\sqrt{3}}{3}\right)$ Either $x = 12.5, y = 5\sqrt{3}$ or (12.5, $5\sqrt{3}$) (12.5, 53		Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1			
Way 4 $\Rightarrow 2.25t^{4} + 4.5t^{2} - 193.75 = 0$ forms and solves a quadratic equation in t^{2} to give $t^{2} =$ or $t =$, and finds at leasts one of $x =$ or $y =$ by using $x = "1.5"t^{2}$ or $y = 2("1.5")t$ dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^{2}$ and $y = 2("1.5")t$ defendent on the previous M mark Finds both $x =$ forms and solves a quadratic equation in t^{2} forms are specified by the second paired. Accept (12.5, $\sqrt{75}$) A1				(3)			
$\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3 \left(\frac{5\sqrt{3}}{3}\right)$ Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ A1		$\Rightarrow 2.25t^{4} + 4.5t^{2} - 193.75 = 0$ {or $9t^{4} + 18t^{2} - 775 = 0$ }	forms and solves a quadratic equation in t^2 to give $t^2 =$ or $t =$, and finds at leasts one of	M1			
		5 5	Finds both $x =$ and $y =$	dM1			
		Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$				

Question Number		Scheme		Notes	Marks	
3.	$C: y^2 = 6$	$5x$; S is the focus of C; y^2	=4ax; P($(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$		
(c) Way 5	$(1.5t^2$	$x_{Q} = -\frac{3}{2}, PQ = 14 \Longrightarrow$ $(1.5) = 14 \Longrightarrow 1.5t^{2} = 12.5$ $\frac{5}{2} \Longrightarrow t = \frac{5\sqrt{3}}{2}$	equation	horizontal distance $PQ = 14$ to form and solve the ion "1.5" t^2 -"-1.5" = 14 to give t^2 = or t =, and finds at leasts one of = or y = by using x = "1.5" t^2 or y = 2("1.5") t		
	3	$5\left(\frac{5\sqrt{3}}{3}\right)^2, y = 3\left(\frac{5\sqrt{3}}{3}\right)$		dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$		
	Either <i>x</i>	=12.5, $y = 5\sqrt{3}$ or (12.5, 5)	5√3)	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
					(3)	
(c) Way 6	$\left(\frac{1}{6}\right)$	$P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow$ $y^2 - \frac{3}{2}y^2 + y^2 = 14^2 \Rightarrow y = .$ $+18y^2 - 6975 = 0$		Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, and solves to give $y =$	M1	
		$6x \Rightarrow x = \dots$		dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1	
	Either x	=12.5, $y = 5\sqrt{3}$ or (12.5, 1	5√3)	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
					(3)	
		1	Q	uestion 3 Notes		
3. (c)	Note	Writing coordinates the				
		E.g. writing $x = 12.5$, $y =$	$5\sqrt{3}$ follo	bowed by $(5\sqrt{3}, 12.5)$ is final A0		
	Note	Obtaining both (12.5, $5\sqrt{3}$	$\overline{3}$ and (12	$(2.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$	is A0	
	Note	Give final A1 for (12.5, av	wrt 8.66)	, with either $y = \sqrt{75}$ or $y = 5\sqrt{3}$ seen in their w	orking	
	Note	You can mark part (b) and	l part (c) t	ogether		

Question Number	Scheme		Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} 2p & 3\\ 3p & 5 \end{pmatrix}$	$\begin{pmatrix} q \\ q \end{pmatrix}; \mathbf{X}\mathbf{A} = \mathbf{I}$	$\mathbf{B}; \ \mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$	
(a)	$\{\det(\mathbf{A}) =\} 2p(5q) - (3p)(3q) \{= p\}$	$q\}$	2p(5q) - (3p)(3q) which can be un-simplifed or simplifed	B1
	$\left\{\mathbf{A}^{-1}=\right\} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{p} \\ -\frac{3}{2} \end{pmatrix}$	$\left(-\frac{3}{p}\right)$	$ \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} $	M1
	$\begin{pmatrix} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	$\left(\frac{2}{q}\right)$	Correct A ⁻¹	A1
				(3)
(b) Way 1	$\left\{ \mathbf{X} = \mathbf{B}\mathbf{A}^{-1} = \right\}$ $\begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} = \dots$ $= \frac{1}{pq} \begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \\ pq & pq \end{pmatrix}$	(or at leas	ttempts \mathbf{BA}^{-1} and finds at least one element at one element calculation) of their matrix X Note: Allow one slip in copying down B Note: Allow one slip in copying down \mathbf{A}^{-1}	M1
	$-\frac{1}{2pq}\begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \end{pmatrix}$		At least 4 correct elements (need not be in a matrix)	A1
	$=\frac{-pq}{pq}\begin{pmatrix}-spq +pq\\pq & pq\end{pmatrix}$		dM1	
	$= \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$	Correct simplified matrix for \mathbf{X}		A1
				(4)
(b) Way 2	$\{\mathbf{XA} = \mathbf{B} \Longrightarrow\} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 2pa + 3pb = p, & 3qa + 5qb = q \\ \mathbf{or} & 2pc + 3pd = 6p, & 3qc + 5qd = 11q \\ \mathbf{or} & 2pe + 3pf = 5p, & 3qe + 5qf = 8q \\ \mathbf{and} \text{ finds at least one of } a, b, c, d, e \text{ or } d = 1 \\ \mathbf{or} & 2pe + 3pf = 5p, & 3qe + 5qf = 8q \\ \mathbf{and} & \mathbf{finds} = 1 \\ \mathbf{or} & \mathbf{finds} = 1 \\ \mathbf{finds} & \mathbf$		Applies $XA = B$ for a 3×2 matrix X and attempts simultaneous equations in <i>a</i> and <i>b</i> or <i>c</i> and <i>d</i> or <i>e</i> and <i>f</i> to find at least one of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> or <i>f</i> Note: Allow one slip in copying down A Note: Allow one slip in copying down B	M1
	(2a+3b=1, 3a+5b=1) $a=2$	2, b = -1	At least 4 correct elements	A1
	$\begin{cases} 2c + 3d = 6, & 3c + 5d = 11 \\ 2e + 3f = 5, & 3e + 5f = 8 \end{cases} \implies c = -$	-3, d = 4 1, f = 1	dependent on the first M mark Finds all 6 elements for the 3×2 matrix X	dM1
	$\Rightarrow \mathbf{X} = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		Correct simplified matrix for \mathbf{X}	A1
				(4)
				7

		Question 4 Notes
4. (a)	Note	Condone $\frac{1}{10pq-9pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ or $\frac{1}{2p(5q)-(3p)(3q)} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ for A1
	Note	Condone $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{pq}$ or $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{2p(5q) - (3p)(3q)}$ for A1
	Note	Condone $\begin{pmatrix} \frac{5q}{pq} & -\frac{3q}{pq} \\ -\frac{3p}{pq} & \frac{2p}{pq} \end{pmatrix}$ for A1
(b)	Note	Way 1: Allow SC 1 st A1 for at least 4 correct elements in $\begin{pmatrix} \frac{2pq}{\text{their det } \mathbf{A}} & \frac{-pq}{\text{their det } \mathbf{A}} \\ \frac{-3pq}{\text{their det } \mathbf{A}} & \frac{4pq}{\text{their det } \mathbf{A}} \\ \frac{pq}{\text{their det } \mathbf{A}} & \frac{pq}{\text{their det } \mathbf{A}} \end{pmatrix}$
		or for at least 4 of these elements seen in their calculations

	Scheme	Notes					
$z^4 - 6z^3 -$	$+34z^2-54z+225$	$\equiv (z^2 + 9)(z^2 + az)$	(+b); a, b are real numbers				
(1 25			At least one of $a = -6$ or $b = 25$	B1			
a = -6, l	b = 25		Both $a = -6$ and $b = 25$	B1			
				(2)			
$\int \pi^2 + 0 =$	$0 \rightarrow 1$ $z - 3i$ $3i$		At least one of $3i, -3i, \sqrt{9}i$ or $-\sqrt{9}i$	M1			
{2, +9-	$0 \rightarrow j z = 51, -51$		Both 3i and -3i	A1			
• z	$z = \frac{6 \pm \sqrt{(-6)^2}}{2(1)}$		Correct method of applying the quadratic formula or completing the square for solving their $z^2 + az + b = 0$; $a, b \neq 0$	M1			
${z =} 3 +$	- 4i, 3 – 4i		3 + 4i and $3 - 4i$	A1			
				(4)			
Im (0,3)			 ± 3i or ± (their k)i plotted correctly on the imaginary axis, where k∈ ℝ, k > 0 dependent on the final M mark being awarded in part (b) Their final two roots of the form 				
(0 -		Re	Satisfies at least one of the criteria	B1ft			
(0, -	(3, -	-4)	Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft			
				(2)			
		0	estion 5 Notes	8			
Na.4-	Cius D1D0 f						
INOTE							
	-	-					
	-	- ,	+ their " a " z + their " b "), with exactly one				
Note							
 Note Give 2nd M1 2nd A1 for z² - 6z + 25 = 0 ⇒ z = 3 + 4i, 3 - 4i with no intermed working. Give 2nd M1 2nd A1 for z = 3 + 4i, 3 - 4i with no intermediate working having a = -6, b = 25 in part (a) or part (b). 							
	$a = -6, b$ $\{z^{2} + 9 = 0$ $\{z^{2} - 6z - 0$ $(0, -1)$	$z^{4} - 6z^{3} + 34z^{2} - 54z + 225$ $a = -6, b = 25$ $\{z^{2} + 9 = 0 \Rightarrow\} z = 3i, -3i$ $\{z^{2} - 6z + 25 = 0 \Rightarrow\}$ $z = \frac{6 \pm \sqrt{(-6)^{2}}}{2(1)}$ $(z - 3)^{2} - 9 + 25 = 3 + 4i, 3 - 4i$ $(0, 3)$ $(0, -3)$ $(0, -3)$ $(0, -3)$ $(3, -4)$ $(3, -4)$ $(0, -3)$ $(3, -4)$	$z^{4}-6z^{3}+34z^{2}-54z+225 \equiv (z^{2}+9)(z^{2}+az)$ $a = -6, b = 25$ $z = -6, b = 25$ $z^{2}+9 = 0 \Rightarrow z = 3i, -3i$ $z^{2}-6z+25 = 0 \Rightarrow z =$ $z = \frac{6 \pm \sqrt{(-6)^{2}-4(1)(25)}}{2(1)} \text{ or }$ $(z - 3)^{2}-9+25 = 0 \Rightarrow z =$ $z = 3 + 4i, 3 - 4i$ $(0, -3)$ $(0, -3)$ $(3, -4)$ $(0, -3)$ $(0, -3)$ $(3, -4)$ Qu Note Give B1B0 for writing down a correct $(0, -3)$ $(0, -3)$ $(3, -4)$ Qu Note Give B1B0 for writing down a correct $(z - 3)^{2} = 2z + \sqrt{9i} \text{ unless recovered is 1st } M$ Note Note $z = \pm \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ Note $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} \text{ unless recovered is 1st } M$ $(z - 3)^{2} = 2 \sqrt{9i} unless rec$	$z^4 - 6z^3 + 34z^2 - 54z + 225 = (z^2 + 9)(z^2 + az + b); a, b are real numbersat least one of a = -6 or b = 25Both a = -6 and b = 25Both a = -6 and b = 25Both 3 = -6 and b = 25At least one of 3i, -3i, \sqrt{9}i or -\sqrt{9}i\{z^2 + 9 = 0 \Rightarrow\} z = 3i, -3iAt least one of 3i, -3i, \sqrt{9}i or -\sqrt{9}iBoth 3 = a - 6 and b = 25Correct method of applying the quadratic formula or completing the square for solving their z^2 + az + b = 0; a, b \neq 0(z - 3)^2 - 9 + 25 = 0 \Rightarrow z =\{z = 3 + 4i, 3 - 4iCorrect method of applying the quadratic formula or completing the square for solving their z^2 + az + b = 0; a, b \neq 0(0, -3)^2 - 9 + 25 = 0 \Rightarrow z =\{z = 3 + 4i, 3 - 4iCorrect method of applying the quadratic formula or completing the square for solving their z^2 + az + b = 0; a, b \neq 0(0, -3)^2 - 9 + 25 = 0 \Rightarrow z =\{z = 3 + 4i, 3 - 4iCorrect method of applying the quadratic formula or completing the square for solving their z^2 + az + b = 0; a, b \neq 0(0, -3)^2 - 9 + 25 = 0 \Rightarrow z =\{z = 3, 4i, 3, -4iCorrect method of applying the quadratic formula or completing the square for solving their z^2 + az + b = 0; a, b \neq 0(0, -3)^2(2, -3)^2(2, -3)^2(2, -3)^2(2, -3)^2$			

	Question 5 Notes Continued								
5. (b)	Note	Special Case: If their <i>3-term quadratic</i> factor $z^2 + a^*z + b^*$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$							
	Note	Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.							
	Note	Note Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "							
		Formula: Attempt to use the correct formula (with values for a, b and c)							
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$							
5. (b)(c)	Note	You can mark part (b) and part (c) together							

Question Number	Scheme Notes			Marks		
6.	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$; Root	s $\alpha, \beta: 0.4 < \alpha$	x < 0.5 and	$1.2 < \beta < 1.3$		
(a)	$\left[f(x) - 2x^{\frac{5}{2}} + 6x^{-\frac{1}{2}} 0 \rightarrow \right]$	Son	ne evidence	$e \text{ of } \pm \lambda x^n \to \pm \mu x^{n-1}; \lambda, \mu \neq 0$	M1	
	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$; Roots α , β : $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $\begin{cases} f(x) = 2x^{\frac{5}{2}} + 6x^{-\frac{1}{2}} - 9 \Rightarrow \\ 3 & 3 \end{cases}$ Differentiates to give $\pm Ax^{\frac{3}{2}} \pm Bx^{-\frac{3}{2}}$; $A, B \neq 0$					
	$f'(x) = 5x^{\frac{3}{2}} - 3x^{-\frac{3}{2}}$ Correct differentiation which can be simplified or un-simplified					
	$\left\{\alpha \approx 0.45 - \frac{f(0.45)}{f'(0.45)}\right\} \Rightarrow \alpha \approx 0.45 - \frac{0.2}{-8}$.428734015		Sumpt at Newton-Raphson using alues of $f(0.45)$ and $f'(0.45)$	M1	
	$\{\alpha = 0.4756211869\} \Rightarrow \alpha = 0.476 (3 c)$		- (Igr	dent on all 4 previous marks 0.476 on their first iteration hore any subsequent iterations)	A1 cso	
	Correct differentiation followed by a Correct answer with <u>n</u>			– • • •	(5)	
(a)	Alternative method 1 for the first 3 ma					
Alt 1		Son	ne evidence	$e \text{ of } \pm \lambda x^n \to \pm \mu x^{n-1}; \lambda, \mu \neq 0$	M1	
	$\begin{cases} u = 2x^3 + 6 v = \sqrt{x} \\ u' = 6x^2 v' = \frac{1}{2}x^{-\frac{1}{2}} \end{cases} \Rightarrow$		$\pm Ax^2($	Differentiates to give $\frac{1}{x} \pm Bx^{-\frac{1}{2}}(2x^3 + 6)}{x}; A, B \neq 0$	M1	
	$f'(x) = \frac{6x^2(\sqrt{x}) - \frac{1}{2}x^{-\frac{1}{2}}(2x^3 + 6)}{x}$		Corre	ct differentiation which can be simplified or un-simplified	A1	
(b)	Either • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - \beta}{"0.1161410527}$	·		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	
	• $\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"}$ • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1}{"0.1161410527"}$		4937"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1	
	• $\beta = \left(\frac{(1.3)("0.3678924937") + (1.)}{"0.1161410527" + "0.}\right)$ $= \left(\frac{0.4782602418 + 0.1393692}{0.4840335464}\right)$ • $\beta = 1.2 + \left(\frac{"0.367892493}{"0.1161410527" + "0.3}\right)$ • $\beta = 1.2 + \left(\frac{"-0.3678924}{"-0.1161410527" + "-1}\right)$	$\frac{632}{678924937} = \left(\frac{0.61}{0.48}\right)$.7629505 34033546 (0.1)		dM1	
	$\{\beta = 1.276005578\} \Rightarrow \beta = 1.276$ (3 d	p)	(Igr	1.276 nore any subsequent iterations)	Al cao	
					<u>(4)</u> 9	
					9	

Question Number		Scheme		Notes	Marks		
6. (b) Way 2	$\frac{x}{"0.3678924937"} = \frac{0.1 - x}{"0.1161410527"}$ $x = \frac{(0.1)("0.3678924937")}{0.4840335464} = 0.0760055778$			At least one of either \pm (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.			
	-	0.4840335464 1.2 + 0.0760055778		Finds x using a correct method of similar triangles and applies " $1.5 +$ their x"	M1 dM1		
	$\{\beta = 1.27\}$	$\beta = 0.276 (3)$	8 dp)	1.276	A1 cao		
(b) Way 3		$\frac{0.1 - x}{678924937"} = \frac{x}{"0.1161410}$ $\frac{("0.1161410527")}{0.4840335464} = 0.023$		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	(4)	
).4840335464 1.3 – 0.0239944222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Finds x using a correct method of similar triangles and applies "1.6 – their x"	M1 dM1		
	$\{\beta = 1.27$	$\beta = 0.05578 \} \Longrightarrow \beta = 1.276 (3)$	8 dp)	1.276	Al cao		
			Que	stion 6 Notes		(4)	
6. (a)	Question 6 NotesNoteIncorrect differentiation followed by their estimate of α with no evidence of applying the						
		NR formula is final dM0A0	•				
	M1	M1 This mark can be implied by applying at least one correct <i>value</i> of either $f(0.45)$					
		to 1 significant figure in 0.4	$45 - \frac{f(0.45)}{f'(0.45)}$	•. So just $0.45 - \frac{f(0.45)}{f'(0.45)}$ with an incorrect	answer		
		and no other evidence scores final dM0A0. You can imply the M1A1A1 marks for algebraic differentiation for either • $f'(0.45) = 5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}$ • $f'(1.5)$ applied correctly in $\alpha \approx 0.45 - \frac{\frac{2((0.45)^3 + 3)}{\sqrt{0.45}} - 9}{\frac{5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}}$					
	Note						
(a)	Alternati	ve method 2 for the first 3 n	narks				
Alt 2	$\begin{cases} u = 2x^3 \\ u' = 6x^2 \end{cases}$	$+6 v = x^{-\frac{1}{2}}$ $v' = -\frac{1}{2}x^{-\frac{3}{2}} \Rightarrow$		Some evidence of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq$ Note: Allow M1 for eith $\pm Ax^2(x^{-\frac{1}{2}})$ or $\pm Bx^{-\frac{3}{2}}(2x^3 + 0)$ or $\pm Bx^{-\frac{3}{2}}(x^3 + 3)$; $A, B \neq$	er 6) M1		
				Differentiates to giv $\pm Ax^2(x^{-\frac{1}{2}}) \pm Bx^{-\frac{3}{2}}(2x^3+6); A, B \neq$	0 ^{M1}		
	f'(x) = 6	$x^{2}(x^{-\frac{1}{2}}) - \frac{1}{2}x^{-\frac{3}{2}}(2x^{3}+6)$		Correct differentiation which can l simplified or un-simplifie			

		Question 6 Notes Continued						
6. (b)	Note	Condone writing the symbol α in place of β in part (b)						
	Note $\frac{\beta - 1.2}{1.3 - \beta} = \frac{\ -0.3678924937\ }{\ 0.1161410527\ }$ is a valid method for the first M mark							
	Note Give 1 st M1 for either $\frac{-f(1.2)}{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{ f(1.3) } = \frac{\beta - 1.2}{1.3 - \beta}$							
	Note	Give M1M1 for the correct statement $\frac{1.3 f(1.2) + 1.2f(1.3)}{f(1.3) + f(1.2) }$						
	Note	Give M1M1 for the correct statement $\beta = \frac{1.3 + 1.2k}{k+1}$,						
	where $k = \frac{f(1.3)}{ f(1.2) } = \frac{0.116141}{0.367892} = 0.31569$							
	$\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"} \implies \beta = 1.276 \text{ with no intermediate working is B1 M1 dM1 A1}$							
	Note $\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{0.1161410527} \Rightarrow \beta = 1.34613 = 1.346 (3 dp) \text{ is B1 N}$							
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{-0.1161410527} \implies \beta = 1.276 \ (3 \text{ dp}) \text{ is B1 M1 dM1 A1}$						

Question Number		Scheme			Notes	Marks	
7.		$5x^2-4x$	$5x^2 - 4x + 3 = 0$ has roots α , β				
(a)	$\alpha + \beta = \frac{2}{5}$	$\frac{4}{5}, \ \alpha\beta = \frac{3}{5}$		Both $\alpha + \beta = \frac{4}{5}$ and $\alpha\beta = \frac{3}{5}$, seen or implied			
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$= \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$		States or uses $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$			
	$\alpha^2 + \beta^2$	$= (\alpha + \beta)^2 - 2\alpha\beta = \dots$		Use of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)			
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$= \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	Ар	oplies $\alpha^2 \beta^2$	= $(\alpha\beta)^2$ correctly in the denominator of $\frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$ using their value of $\alpha\beta$	M1	
		$=\frac{-\left(\frac{14}{25}\right)}{\left(\frac{9}{25}\right)}=-\frac{14}{9}$	depe		LL previous marks being awarded $-1\frac{5}{9}$ or -1.5 from correct working	Al cso	
						(5)	
(b) Way 1	{Sum =}	$\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) \left\{= -\frac{14}{3}\right\}$	$-\frac{14}{9} \left\{ = -\frac{14}{3} \text{ or } -\frac{42}{9} \right\}$ Simplifies $\frac{3}{\alpha^2} + \frac{3}{\beta^2}$ to give 3(their answer to (a))			M1	
	{Product	$= \left\{ \left(\frac{3}{\alpha^2}\right) \left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} \left\{ = 25 \right\} $ Applies $\frac{9}{(\text{their } \alpha\beta)^2}$ using their value of $\alpha\beta$			M1		
	$x^2 + \frac{14}{3}x$	$x + 25 = 0$ Applies $x^2 - (sum)x + product$ (can be implied), where sum and product are numerical values. Note: "=0" is not required for this mark				M1	
	$3x^2 + 14x$	x + 75 = 0		Any int	eger multiple of $3x^2 + 14x + 75 = 0$, including the "=0"	A1	
						(4) 9	
			(Juestion 7 N	Notes	,	
7. (a)	Note	Writing a correct $\alpha^2 + \beta^2 =$			without attempting to substitute at leas	t one	
		of either their $\alpha + \beta$ or their					
	Note				E leading to $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(-\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	$=-\frac{14}{9}$	
	Note Writing down α , $\beta = \frac{2 + \sqrt{11}i}{5}$, $\frac{2 - \sqrt{11}i}{5}$ and then stating $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ or						
		$\alpha + \beta = \frac{2 + \sqrt{11}i}{5} + \frac{2 - \sqrt{11}i}{5} = \frac{4}{5} \text{ and } \alpha\beta = \left(\frac{2 + \sqrt{11}i}{5}\right)\left(\frac{2 - \sqrt{11}i}{5}\right) = \frac{3}{5} \text{ scores B0}$					
	Note Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/a						
		M marks in part (a)					
	Note	Give B0M0M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\left(\frac{2+\sqrt{11}i}{5}\right)^2} + \frac{1}{\left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$					

		Question 7 Notes Continued						
7. (a)	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}}{5}\right)^2 + \left(\frac{2-\sqrt{11}}{5}\right)^2}{\left(\frac{2+\sqrt{11}}{5}\right)^2 \left(\frac{2-\sqrt{11}}{5}\right)^2} = -\frac{14}{9}$						
	Note	Give B0M1M0M0A0 for						
		$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}}{5} + \frac{2-\sqrt{11}}{5}\right)^2 - 2\left(\frac{2+\sqrt{11}}{5}\right)\left(\frac{2-\sqrt{11}}{5}\right)}{\left(\frac{2+\sqrt{11}}{5}\right)^2 \left(\frac{2-\sqrt{11}}{5}\right)^2} = -\frac{14}{9}$						
	Note	Allow B1 for both $S = \frac{4}{5}$ and $P = \frac{3}{5}$ or for $\sum = \frac{4}{5}$ and $\prod = \frac{3}{5}$						
	Note Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5							
	Note	Give 2^{nd} M1 for applying their $\alpha + \beta = \frac{4}{5}$ on						
		$5\alpha^{2} - 4\alpha + 3 = 0, \ 5\beta^{2} - 4\beta + 3 = 0 \Longrightarrow 5(\alpha^{2} + \beta^{2}) - 4(\alpha + \beta) + 6 = 0$						
		to give $5(\alpha^2 + \beta^2) - 4\left(\frac{4}{5}\right) + 6 = 0 \left\{ \Rightarrow \alpha^2 + \beta^2 = \frac{-6 + \frac{16}{5}}{5} = -\frac{14}{25} \right\}$						
(b)	Note A correct method leading to $a = 3, b = 14, c = 75$ without writing a final answer of							
		$3x^2 + 14x + 75 = 0$ is final M1A0						
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ to give						
		$x^{2} + \frac{14}{3}x + 25 = 0 \implies 3x^{2} + 14x + 75 = 0$ scores M0M0M1A0 in part (b)						
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ to find $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and applying						
		$\left\{\alpha + \beta = \frac{4}{5}, \right\} \alpha \beta = \frac{3}{5}, \frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ can potentially score full marks in part (b). E.g.						
		• Sum $=$ $\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) = -\frac{14}{3}$						
		• Product $=\left(\frac{3}{\alpha^2}\right)\left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} = 25$						
		• $x^{2} + \frac{14}{3}x + 25 = 0 \implies 3x^{2} + 14x + 75 = 0$						
	Note	Finding $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and correctly writing $x^2 - 3\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)x + \frac{9}{(\alpha\beta)^2} = 0$ followed by						
		$x^{2} - \frac{14}{3}x + 25 = 0 \implies 3x^{2} - 14x + 75 = 0 \text{ (incorrect substitution of } \frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = -\frac{14}{9})$						
		is M0M1M1A0						

Question Number	Scheme	Notes	Marks
7.	$5x^2 - 4x + 3 =$	0 has roots α , β	
(b) Way 2	$y = \frac{3}{x^2} \Rightarrow x = \frac{3}{y^2} \Rightarrow 5\left(\frac{3}{y}\right) - 4\sqrt{\frac{3}{y}} + 3 = 0$	Substitutes $x^{2} = \frac{3}{y}$ into $5x^{2} - 4x + 3 = 0$	M1
	$\frac{15}{y} + 3 = 4\sqrt{\frac{3}{y}} \Longrightarrow \left(\frac{15}{y} + 3\right)^2 = \left(4\sqrt{\frac{3}{y}}\right)^2$	dependent on the previous M mark Correct method for squaring both sides of their equation	dM1
	$\frac{225}{y^2} + \frac{45}{y} + \frac{45}{y} + 9 = 16\left(\frac{3}{y}\right)$		
	$\frac{225}{y^2} + \frac{42}{y} + 9 = 0$		
	$9y^2 + 42y + 225 = 0$	dependent on the previous M mark Obtains an expression of the form $ay^2 + by + c$, $a, b, c \neq 0$ Note: " = 0 " not required for this mark	dM1
		Any integer multiple of $3y^2 + 14y + 75 = 0$, or $3x^2 + 14x + 75 = 0$, including the "=0"	A1
			(4)

Question Number		Scheme		Notes	Marks	
8.		$egin{pmatrix} a & 0 \ 1 & b \end{pmatrix}^n = egin{pmatrix} a^n & 0 \ \dfrac{a^n - b^n}{a - b} & b^n \end{pmatrix}; \ n \in \mathbb{Z}^+; \ a eq b$				
	RH	$HS = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix},$ $HS = \begin{pmatrix} a & 0 \\ \frac{a-b}{a-b} & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ the result is true for $n = k$)	or LHS = $\begin{pmatrix} a \\ 1 \end{pmatrix}$	Shows or states that either LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ $\begin{pmatrix} 0 \\ b \end{pmatrix}$ or $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{1}$, RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	B1	
	$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{k+1}$	the result is true for $n = k$) $a^{k} = \begin{pmatrix} a^{k} & 0 \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \text{ or } \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	$\begin{pmatrix} 0 \\ b \end{pmatrix} \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix}$	$ \begin{pmatrix} a^k & 0\\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} $ multiplied by $ \begin{pmatrix} a & 0\\ 1 & b \end{pmatrix} $ (either way round)	M1	
	$\begin{bmatrix} a^{k+1} & 0\\ \frac{a(a^{k}-b^{k})}{a-b} + b^{k} & b^{k+1} \end{bmatrix} \text{ or } \begin{bmatrix} a^{k+1} & 0\\ a^{k} + \frac{b(a^{k}-b^{k})}{a-b} & b^{k+1} \end{bmatrix}$ or e.g. $\begin{bmatrix} a^{k+1} & 0\\ \frac{a(a^{k}-b^{k})}{a-b} + \frac{b^{k}(a-b)}{a-b} & b^{k+1} \end{bmatrix}$ Multiplies out to give a correct un-simplified matrix					
		$ \frac{a-b}{a-b} = \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1}-b^{k+1}}{a-b} & b^{k+1} \end{pmatrix} $	depe	ndent on the previous A mark Achieves this result with no algebraic errors	A1	
	If the rea	sult is <u>true for $n = k$</u> , then it is <u>true</u> <u>true for $n = 1$</u> , then the			A1 cso (5)	
					5	
8.	Note	Final A1 is dependent on all previ It is gained by candidates conveying either at the end of their solution	ng the ideas of all	cored. four underlined points		
	Note Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$					
	Note	Give B0 for just stating $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^1$	$= \overline{\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}}$			
	Note	E.g. $ \begin{pmatrix} a^{k} & 0 \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} \frac{a^{k}}{a - b} \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^{k} \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} $	$egin{array}{ccc} a^{k+1} & 0 \ & \ & \ & \ & \ & \ & \ & \ & \ &$	vith no intermediate working is N	[1A0A0A0	
	Note	Writing $\begin{pmatrix} a^k & 0\\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0\\ 1 & b \end{pmatrix} = \begin{pmatrix} a & 0\\ 1 & b \end{pmatrix}$	$\left(\frac{a^{k+1}}{\frac{a(a^k-b^k)}{a-b}}+b^k\right)$	$ \begin{array}{c} 0\\ b^{k+1} \end{array} = \begin{pmatrix} a^{k+1} & 0\\ \frac{a^{k+1} - b^{k+1}}{a-b} & b^{k+1} \end{pmatrix} $ is	M1A1A1	

Question Number	Scheme	Notes	Marks
9.	(a) $\frac{z-ki}{z+3i} = i$ (b)	b)(i) $k = 4$ (ii) $k = 1$	
(a) Way 1	$z - k\mathbf{i} = \mathbf{i}(z + 3\mathbf{i}) \implies z - k\mathbf{i} = \mathbf{i}z - 3$ $\implies z - \mathbf{i}z = -3 + k\mathbf{i} \implies z(1 - \mathbf{i}) = -3 + k\mathbf{i}$	Complete method of making <i>z</i> the subject	M1
	$\Rightarrow z = \frac{-3 + ki}{(1 - i)}$	Correct expression for $z =$	A1
	$z = \frac{(-3+ki)}{(1-i)} \frac{(1+i)}{(1+i)} \left\{ = \frac{(-3+ki)(1+i)}{2} \right\}$	dependent on the previous M mark Multiplies numerator and denominator by the conjugate of the denominator	dM1
	$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i^{*}$	Achieves the correct answer with no errors seen	A1* cso
			(4)
(a)	$z - k\mathbf{i} = \mathbf{i}(z + 3\mathbf{i})$	Multiplies both sides by $(z + 3i)$,	
Way 2	$(x + y\mathbf{i}) - k\mathbf{i} = \mathbf{i}(x + y\mathbf{i} + 3\mathbf{i})$	applies $z = x + yi$, o.e., multiplies out and	M1
	x + (y - k)i = -y - 3 + xi	attempts to equate both the real part and	111
	$\{\text{Real} \Rightarrow\}$ $x = -y - 3$	the imaginary part of the resulting equation	
		Both correct equations	A1
	${\text{Imaginary}} \Rightarrow y - k = x$	which can be simplified or un-simplified	211
	$\begin{cases} x+y=-3\\ x-y=-k \end{cases} \implies x=\frac{-k-3}{2}, y=\frac{k-3}{2} \end{cases}$	dependent on the previous M mark Obtains two equations both in terms of x and y and solves them simultaneously to give at least one of $x =$ or $y =$	dM1
	$\Rightarrow z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$	Finds $x = \frac{-k-3}{2}, y = \frac{k-3}{2}$	A1* cso
		and writes down the given result	
<i>(</i> 1) <i>(</i> 1)			(4)
(b)(i)	$ \{k = 4 \Longrightarrow\} z = -\frac{(4+3)}{2} + \frac{(4-3)}{2}i \left\{ = -\frac{7}{2} + \frac{1}{2}i \right\} $ $ \{ z = \} \sqrt{\left(-\frac{7}{2}\right)^2 + \left(\frac{1}{2}\right)^2} $	Some evidence of substituting $z = 4$ into the given expression for z and a full attempt at applying Pythagoras to find $ z $	M1
	$= \sqrt{\frac{50}{4}}, \sqrt{12.5}, \frac{\sqrt{50}}{2}, \frac{5}{2}\sqrt{2} \text{ or } \frac{5}{\sqrt{2}} \text{ or } \sqrt{\frac{25}{2}}$	Correct exact answer	A1
(ii)	$\{k=1 \Rightarrow\} z = -\frac{(1+3)}{2} + \frac{(1-3)}{2}i \ \{=-2-i\}$ arg $z = -\pi + \tan^{-1}(\frac{1}{2})$	Some evidence of substituting $z = 1$ into the given expression for z and uses trigonometry to find an expression for $\arg z$ in the range $(-3.14, -1.57)$ or $(-180^\circ, -90^\circ)$ or $(3.14, 4.71)$ or $(180^\circ, 270^\circ)$	M1
	$\{\arg z = -\pi + 0.463647 \Rightarrow\} \arg z = -2.677$	$(945 \{= -2.678 (3 dp)\})$ awrt -2.678	A1
			(4)
			8

Question Number		Scheme	Notes	Marks		
9.		(a) $\frac{z-ki}{z+3i} = i$ (b)(i) $k = 4$ (ii) $k = 1$				
(a) Way 3	$\frac{z-ki}{i}$	$z = z + 3i \implies \frac{iz + k}{(-1)} = z + 3i$	Complete method of making z the subject	M1		
	~	$k = z + 3i \implies -k - 3i = z + iz$ 3i = z(1 + i) $-\frac{k - 3i}{(1 + i)}$	Correct expression for $z =$	A1		
	$z = \frac{(-k)}{(1-k)}$	$\frac{(1-i)}{(1-i)}$	dependent on the previous M mark Multiplies numerator and denominator by the conjugate of the denominator	dM1		
	$z = -\frac{(k+1)}{2}$	$\frac{(k-3)}{2} + \frac{(k-3)}{2}i$ *	Achieves the correct answer with no errors seen	A1* cso		
				(4)		
		Q	uestion 9 Notes			
9. (a)	Note	Condone any of e.g. $z = -\frac{k+3}{2} + \frac{k-3}{2}i$ or $z = -\frac{(3+k)}{2} + \frac{(-3+k)}{2}i$ for the final A mark				
(b)(i)	Note	M1 can be implied by awrt 3.54 or truncated 3.53				
	Note	Give A0 for 3.5355 without reference to $\sqrt{\frac{50}{4}}$, $\sqrt{12.5}$, $\frac{\sqrt{50}}{2}$, $\frac{5}{2}\sqrt{2}$ or $\frac{5}{\sqrt{2}}$ or $\sqrt{\frac{25}{2}}$				
(b)(ii)	Note	Allow M1 (implied) for awrt -2.7, truncated -2.6, awrt -153° or awrt 207° or awrt 3.6				

Question Number	Scheme			Notes	Mark	S
10.	$H: xy = 144; P\left(12p, \frac{12}{p}\right), p \neq 0$, lies on H . Normal to H at P crosses positive x-axis at Q and negative y-axis at R					
		-	as at Q and z	• •		
(a)				$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$	-	
	$xy = 144 \implies x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$			es product rule to give $\pm x \frac{dy}{dx} \pm y$	M1	
	$x = 12t$, $y = \frac{12}{t} \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -$	$\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$	thei	$\operatorname{tr} \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}t}}; \text{ Condone } t \equiv p$		
	So at <i>P</i> , $m_T = -\frac{1}{p^2}$		Correct calc	ulus work leading to $m_T = -\frac{1}{p^2}$	A1	
	So, $m_N = p^2$	Applies	$m_N = \frac{-1}{m_T}, $	where m_T is found using calculus	M1	
	• $y - \frac{12}{p} = "p^2"(x - 12p)$ or • $\frac{12}{p} = "p^2"(12p) + c \implies y = "p^2$		Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is found by using calculus.			
	Correct algebra leading to $y = p^2 x + \frac{1}{2}$		Correct solution only	A1 *		
	Note: m_N must be a function	nction of p for	or the 2 nd M1	and 3 rd M1 mark		(5)
(b)	$y = 0 \implies x_Q = 12p - \frac{12}{p^3}$		Puts $y = 0$ and finds x or puts $x = 0$ and finds y	M1		
	$x = 0 \Longrightarrow y_R = \frac{12}{p} - 12p^3$	At least one of x_Q or y_R correct, o.e.		A1		
	$\left(12p - \frac{12}{p^3}, 0\right)$ and $\left(0, \frac{12}{p} - 12p^3\right)$		Both sets of coordinates correct. {Ignore labelling of coordinates}	A1		
			1			(3)
(c)	Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right)$	$\frac{1}{2} \times$	$(\pm \text{ their } x_{\mathcal{Q}})(\pm \text{ their } y_{\mathcal{R}}) = 512$	M1		
				Correct equation which can be un-simplified or simplified	A1	
	$144p^4 - 1312 + \frac{144}{p^4} = 0$					
	$144p^8 - 1312p^4 + 144 = 0$	Correct 3 term quadratic in p^4				
	$\left\{ \Rightarrow 9p^8 - 82p^4 + 9 = 0 \right\}$	Note: 144 <i>p</i>	$b^8 + 144 = 13$	$12p^4$ is acceptable for this mark	A1	
	$(9p^4 - 1)(p^4 - 9) = 0 \implies p^4 =$	$\frac{dependent \text{ on the previous M mark}}{(p^4 - 9) = 0 \implies p^4 =}$ $Uses a 3TQ \text{ in } p^4 \text{ (or an implied 3TQ in } p^4)$ to find at least one value of $p^4 =$			dM1	
	$p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$			both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only w $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$	A1	
						(5) 13

Question Number	Scheme			Notes	Marks			
10. (c)	Area OQI	$R = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$			$\frac{1}{2} \times (\pm \text{ their } x_{Q})(\pm \text{ their } y_{R}) = 512$ Correct equation which can have simplified or simplified	M1 A1		
	$144\left(p-\frac{1}{2}\right)$	$\left(\frac{1}{p^3}\right)\left(p^3 - \frac{1}{p}\right) = 1024 \implies p^4 - 2 + \frac{1}{p^4} = \frac{10}{10}$			be un-simplified or simplified			
		$\int^2 = \frac{64}{9} \implies p^2 - \frac{1}{p^2} = \pm$						
	$3p^4 - 8p^2$	$a^2 - 3 = 0$ and $3p^4 + 8p^2$	-3 = 0 N		Both correct 3 term quadratics in p^2 oth $p^4 - 1 = \frac{8}{3}p^2$ and $3p^4 + 8p^2 = 3$	A1		
					is acceptable for this mark			
	$(3p^2+1)$	$(p^2-3)=0 \Rightarrow p^2=$			ependent on the previous M mark			
		$or (p^2+3)=0 \implies p^2=$	U		Q in p^2 (or an implied 3TQ in p^2) to find at least one value of $p^2 =$	dM1		
	$p=\sqrt{3}$ a	nd $p = -\frac{1}{\sqrt{3}}$		Obta	ins both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only	A1		
			Questi	on 10 N	otos	(5)		
		Question 10 Notes						
10. (a)	Note		P		rchanged in $y =$ for final A1			
(b)	Note		For the accuracy marks in part (b) allow equivalents such as					
		• $x = 12p - \frac{12}{2}$ or	$x = \frac{12p^4 - 12}{2}$	or $x =$	$\frac{12(p^2-1)(p^2+1)}{2}$			
		p^{3}	• $x = 12p - \frac{12}{p^3}$ or $x = \frac{12p^4 - 12}{p^3}$ or $x = \frac{12(p^2 - 1)(p^2 + 1)}{p^3}$					
		• $y = \frac{12}{p} - 12p^3$ or $y = \frac{12 - 12p^4}{p}$						
(c)	Note	Give 1 st M1, 1 st A1 for						
		• $\frac{1}{2}\left(12p-\frac{12}{p^3}\right)\left(\frac{12}{p}\right)$	• $\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ {correct use of modulus}					
		$\bullet \ \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(12p -$	• $\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(12p^3 - \frac{12}{p}\right) = 512$ {modulus has been applied here}					
		$\bullet -\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} \right)$	• $-\frac{1}{2}\left(12p-\frac{12}{p^3}\right)\left(\frac{12}{p}-12p^3\right) = 512$ {modulus has been applied here}					
	Note	Give 1 st M1, 1 st A0 for $\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ {modulus has not been applied on y_R }						
	Note	Writing a correct $144p^4$	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by a correct e.g. $p^4 = 9$ with no					
		intermediate working is	2 nd A0, 2 nd M1					
	Note	Writing a correct $144p^4$	$-1312 + \frac{\overline{144}}{p^4} = 0$	0 o.e. fo	blowed by $p^4 = 9$ and $p^4 = \frac{1}{9}$ with n	10		
		intermediate working is	2 nd A1 (implied)	, 2 nd M1	l			